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Abstract: The Aesculapian snake (Zamenis longissimus) is distributed in Central and Southern Europe,
the Balkans, Anatolia, and Iran, but had a wider mid-Holocene distribution into Northern Europe.
To investigate the genetic affinity of a Danish population that went extinct in historical times,
we analysed three ethanol-preserved individuals dating back to 1810 using a silica-in-solution
ancient DNA extraction method, combined with next-generation sequencing. Bioinformatic mapping
of the reads against the published genome of a related colubrid snake revealed that two of the
three specimens contained endogenous snake DNA (up to 8.6% of the reads), and this was evident
for tooth, bone, and soft tissue samples. The DNA was highly degraded, observed by very short
average sequence lengths (<50 bp) and 11–15% C to T deamination damage at the first 5′ position.
This is an effect of specimen age, combined with suboptimal, and possibly damaging, molecular
preservation conditions. Phylogeographic analyses of a 1638 bp mtDNA sequence securely placed
the two Danish Aesculapian snakes in the Eastern (Balkan glacial refugium) clade within this species,
and revealed one previously-undescribed haplotype. These results provide new information on the
past distribution and postglacial re-colonization patterns of this species.

Keywords: Aesculapian snake; Zamenis longissimus; ancient DNA; relics; DNA preservation; museum
specimens; phylogeography

1. Introduction

Collections of biological specimens represent an essential resource for studying biodiversity on
our planet. Over the past decade it has become increasingly clear that such museum collections not
only offer a wealth of information on morphological biological diversity, but also serve as a record
of past and present genetic diversity [1,2]. DNA obtained from historical collections can offer direct
insight into the gene pools of extinct species or populations, thus providing unique phylogenetic
and phylogeographic information, not possible to obtain from living individuals. The extinct Danish
population of the Aesculapian snake (Zamenis longissimus) represents such a case.

The Aesculapian snake is a non-venomous colubrid snake distributed in Central and Southern
Europe including the Balkans, Anatolia, and Iran, with introduced populations in Wales and London
(Figure 1). The species’ northern distribution limit coincides with the 48th to 50th parallel north,
but c. 10 isolated populations in Germany, Czech Republic, and Poland exist outside the main
distribution, restricted to warm and humid microhabitats in river valleys [3–5]. A further five
northern populations have gone extinct during the last 150 years [6], including the population
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in Denmark. These isolated populations, whether extinct or extant, are possible remnants of an
earlier, more widespread distribution, evidenced by numerous fossil findings of this species [7,8]
(Figure 1). In the mid-Holocene, the mean temperature in the northern hemisphere was higher
than the present day which is why some thermophilous European species, including Z. longissimus,
had a distribution extending further north than their current distribution [9,10]. Aesculapian snake
fossils from Denmark represent the species’ Mid-Holocene northernmost distribution border [9,11,12].
The presence of this species during historical times in Denmark is evidenced by a number of direct
observations and museum specimens collected throughout the 17th to 19th centuries [13–15]. All reliable
observations of living Aesculapian snakes in Denmark derive from the southern tip of the island Zealand
(Sjælland) [16,17] (Figure 1). This area was earlier characterized by coppice of hazel [18], but the
management practice ceased in late 1800s and the habitat changed, likely becoming unfavourable
for the snakes. Three ethanol-preserved specimens exist from the historical Danish population from
Southern Zealand, collected in 1810, 1851, and 1863, respectively, but no previously-published study
on Z. longissimus morphology or phylogenetics has included these specimens.
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Figure 1. A: the main distribution of Z. longissimus (downloaded and modified from iucnredlist.org),
highlighting the Eastern and Western genetic clades identified in Musilová et al. [19] and the extinct
Danish population from Southern Zealand (map insert). B: the current relictual (continent) or
introduced (UK) populations marked with black dots. Populations that went extinct in historical
times are marked with orange dots and fossil finds are marked with green dots. Modified from
Gomille [6], Richter and Noe-Nygaard [11], and Kristensen [12]. Three historical Danish specimens
were sampled for this study: C: HK2489, D+E: ZMUC R8974, F: ZMUC R8975. Photos: N. Ioannou and
M.E. Allentoft.

The objective in the current study is two-fold. First and foremost, we aim to investigate the
genetic relationship between the extinct Danish population and the genetically well-described extant
Z. longissimus populations. Musilová et al. [19] demonstrated a clear population genetic structuring
with four main mtDNA clades in this species. Furthermore they showed that the current small
and isolated populations north of the core distribution belong to the Eastern clade, suggesting that
it was snakes from a Southern Balkan glacial refugium that colonized Northern Europe during the
mid-Holocene climatic optimum. We aim to investigate if the genetic profiles of the Danish Aesculapian
snakes are consistent with this scenario.
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A second objective is to explore the molecular potential in these old ethanol-preserved specimens.
By using highly-optimized ancient DNA (aDNA) extraction protocols combined with next-generation
sequencing technology it is possible to obtain data from severely degraded DNA that will fail with
standard extraction methods and PCR-based technology. We test the Aesculapian snake material using
a silica-in-solution extraction method that has previously been used in large-scale genomic studies on
ancient human skeletal material [20]. In this context we compare DNA preservation in different types
of snake tissue (tooth, bone, and soft tissue). We believe that the protocols and results presented here
have high relevance to scientists that engage in museum collection-based molecular research.

2. Materials and Methods

2.1. Samples

Three historical specimens were sampled for this study (Figure 1), representing all known museum
specimens of Z. longissimus from Denmark. HK2489 is a 102 cm long female collected in 1810 (noted
locality: Petersgaard Skovdistrikt, Sydsjælland); ZMUC R8974 is a 128 cm long female, collected in
1863 (noted locality: Petersværft Skovridergård, Sydsjælland), and ZMUC R8975 is an 81 cm long
female collected in 1851 (Noted locality: Petersgaard Skovdistrikt, Sydsjælland), received alive at
the Natural History Museum of Denmark and killed and stored in ethanol. The exact preservation
history of the other two specimens is unknown but today they are stored in ethanol (Figure 1) and have
presumably been so since the time of collection. Small pieces of muscle and skin tissue (<0.2 g) were
removed from all three, and we also obtained 3–4 teeth from each of two individuals, and a complete
vertebra from one individual (Table 1).

Table 1. Sequencing and molecular preservation of three Z. longissimus museum specimens.

Sample Substrate Total Retained Mapped Non-Clonal Hits, % Efficiency, % C-T, % Av. Length, bp

HK2489 muscle/skin 172,107,931 147,491,661 8,696,705 884,972 5.9 0.51 15.5 47.1
ZMUC R8974 muscle/skin 76,664,518 63,973,314 5,497,285 365,276 8.6 0.48 11.0 48.6
ZMUC R8974 teeth 59,814,253 53,875,108 591,382 149,579 1.1 0.25 13.8 44.2
ZMUC R8974 vertebra 108,710,374 91,998,453 4,480,788 1,416,148 4.9 1.30 14.7 43.1
ZMUC R8975 muscle/skin 33,202,047 22,458,083 139,615 18,940 0.6 0.06 11.2 45.7
ZMUC R8975 teeth 50,978,945 40,947,311 453,775 73,277 1.1 0.14 15.2 42.0

Basic sequencing, mapping, and DNA damage statistics per sample and substrate. Total, total number of sequences
generated; Retained, number of sequences retained after adapter trimming and removing <30 bp sequences;
Mapped, number of sequences successfully aligned to the T. sirtalis genome; Non-clonal, number of sequences
retained after removing identical sequences (clones) within each library; Hits, percentage of retained sequences
that could be aligned; Efficiency, the percentage of non-clonal aligned sequences among total number of generated
sequences; C-T, percentage of sequences showing DNA deamination damage at position 1 (5′ end); Av. Length,
average length (bp) of the aligned sequences.

2.2. DNA Extraction

A total of six DNA extracts were prepared for this study: three soft tissue samples (muscle/skin),
two tooth samples, and one bone sample. The DNA was extracted using a silica-in-solution method
optimized for retaining short and degraded DNA molecules [20]. The samples were incubated for
24 h at 45 ◦C in 5 mL digestion buffer containing 4.7 mL 0.5 M EDTA buffer, 50 µL of Proteinase K
(0.14–0.22 mg/mL, Roche, Basel, Switzerland), 250 µL 10% N-laurylsarcosyl, and 50 µL TE buffer
(100×). The solution was spun down and the supernatant transferred to a 50 mL tube, where it was
mixed with 100 µL of silica suspension (see [20]) and 40 mL of binding buffer. The binding buffer was
prepared in bulk by mixing 500 mL buffer PB (Qiagen, Hilden, Germany) with 9 mL of sodium acetate
(5 M), and 2.5 mL of sodium chloride (5 M), pH adjusted to 4–5 with 37% HCL. After 1 h of incubation
(room temperature) with binding buffer and silica, the supernatant was removed and the pelleted silica
was re-suspended in 1 mL of new binding buffer, spun down, and washed twice with 1 mL 80% cold
ethanol. Finally, the DNA was eluted in 80 µL of EB buffer (Qiagen). Extraction blanks were included
with each round of extractions. The work was conducted using strict aDNA guidelines (e.g., [21]) in a
dedicated clean lab at the Centre for GeoGenetics at the Natural History Museum of Denmark.
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2.3. Library Preparation and Sequencing

DNA extract was built into a blunt-end library using the NEBNext DNA Sample Prep kit E6070
(New England Biolabs, Ipswich, MA, USA) and Illumina-specific adapters (Illumina, San Diego, CA,
USA). The libraries were prepared as described previously [22] with a few modifications: the end-repair
step was performed with 20 µL of DNA extract, 2.5 µL repair buffer, and 1.25 µL repair enzyme mix.
The solution was incubated for 20 min at 12 ◦C, followed by 15 min at 37 ◦C, and purified using the
same binding buffer as used for extractions (see above) with Qiagen MinElute columns, and eluted
in 15 µL of EB buffer. Next, Illumina-specific adapters (prepared as in [23]) were ligated to the
end-repaired DNA in 25 µL reactions (15 µL of DNA, 5 µL of ligation buffer, 0.5 µL of adapter mix,
2.5 uL of Quick T4 ligase, 2 µL of H2O). This solution was incubated for 15 min at 20 ◦C and purified
with PB buffer on Qiagen MinElute columns, before eluted in 20 µL EB buffer. The adapter fill-in
reaction was performed in a 24 µL volume (20 µL of DNA, 2.5 uL of fill-in buffer, and 1.5 µL of Bst
polymerase) and incubated for 20 min at 37 ◦C followed by 20 min at 80 ◦C to inactivate the Bst enzyme.
To determine the number of PCR cycles required to reach sufficient DNA concentration for sequencing,
1 µL of library was amplified with qPCR and SYBR Green detection chemistry and the CT values
recorded. The entire remaining DNA library (ca. 24 µL) was then amplified and indexed in 50 µL PCR
reactions containing 1X KAPA HiFi HotStart Uracil + ReadyMix (KAPA Biosystems, Woburn, MA,
USA) and 200 nM of each of Illumina’s Multiplexing PCR primer in PE1.0. Thermocycling conditions
were as follows: 1 min at 94 ◦C, followed by a sample-specific number of cycles (13–20 cycles) of 15 s at
94 ◦C, 20 s at 60 ◦C, and 20 s at 72 ◦C, and a final extension step of 1 min at 72 ◦C. The amplified library
was purified with PB buffer on Qiagen MinElute columns, before being eluted in 30 µL EB buffer.
Negative library controls constructed on H2O were included, as well as libraries constructed on the
negative extractions controls. Finally the DNA concentration of the individual libraries was measured
on an Agilent Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA) before being pooled equimolarly and
‘shotgun’ sequenced on an Illumina HiSeq 2500 platform using 81 bp single read chemistry (87 bp
minus 6 bp index).

2.4. Bioinformatics

The data were base-called using the Illumina software CASAVA 1.8.2 and sequences were
de-multiplexed with a requirement of a full match of the six nucleotide indices that were used. The raw
reads were trimmed for adapters using AdapterRemoval2 [24], and trimmed reads shorter than 30 bp
were discarded. Since no reference genome exists for Z. longissimus, we performed an initial round of
mapping against the draft genome sequence of another colubrid snake species, Thamnophis sirtalis [25]
allowing to test for the presence of genomic snake DNA in our samples. The trimmed reads were
mapped using BWA v. 0.7.15 [26] with default settings, and Samtools v. 1.5 [27] was used to remove
duplicate sequences. To investigate the level of DNA degradation in our samples, the mapped
sequences were analysed with mapDamage v.2.0.5 [28].

For the phylogeographic analyses, we mapped the shotgun data (as above) against two published
Z. longissimus mtDNA sequences (cytochrome c oxidase subunit I and cytochrome b, coxI and cytb)
representing each of the four different phylogeographic lineages (Eastern E1, Western W1, Greek G1,
Asian T1) as defined previously [19]. The individual bamfiles were then imported into Geneious
v.8.1.7 [29] for manual inspection and consensus sequence construction, applying a 75% site identity
threshold and a minimum site coverage of 3×. The consensus sequences are available at GenBank
under accession numbers MH018690-MH018693.

2.5. Alignment and Network Analysis

The consensus sequences were then concatenated (coxI + cytb) and aligned in Geneious against
92 Z. longissimus sequences (1638 bp), representing the dataset analysed in Musilová et al. [19].
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The alignment was converted to a Nexus file format and imported into POPART [30] to construct an
unrooted median-joining network.

3. Results

3.1. Sequencing, Trimming, and Mapping

Roughly 500 million DNA sequences were generated for this project, ranging from 33 to
172 million per extract (Table 1). Following bioinformatic trimming and mapping against the T. sirtalis
genome between 0.6% and 8.6% of the sequences could be aligned, representing an overall mapping
efficiency (clonal reads, low quality reads, and <30 bp reads removed) between 0.06% and 1.3%
(Table 1). Given that we had to rely on the T. sirtalis genome as reference for the genome-wide mapping,
these numbers are likely lower than the true endogenous DNA content of the samples. Regardless,
based on these data it is evident that two of the three specimens (HK2489 and ZMUC R8974) showed
promising potential. Moreover, for ZMUC R8974 all three substrate types (muscle/skin, bone, tooth)
yielded snake DNA; the vertebrae sample performed best with an overall mapping efficiency of 1.3%
(Table 1).

3.2. DNA Preservation

When mapped against the T. sirtalis genome and analysed in mapDamage2, the data from all
DNA extracts showed a marked increase in C to T deamination damage towards the 5′-ends of the
sequences, ranging from ca. 11% to 15% at position 1 (Table 1, Figure 2). The C-T damage rates
appeared slightly lower in the soft tissue samples compared to bone and tooth (10% vs. 14% in ZMUC
R8974 and 11% vs. 15% in ZMUC R8975). The DNA was highly degraded with length distributions of
the mapped reads peaking well below 50 bp (Figure 2). There was a tendency for soft tissue samples to
display slightly longer average sequence lengths than bone and tooth (Figure 2).
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Figure 2. DNA damage based on shotgun sequencing data of three types of tissue (soft tissue, tooth,
bone) obtained from the same historical Z. longissimus individual (ZMUC R8974), and using T. sirtalis as
reference genome in the mapping. A: C to T deamination damage (red line) recorded at each position
in the read from the 5′ end of the molecules (output from mapDamage). B: The mapped read length
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distribution showing very short average read lengths and an exponentially declining distribution as
typical for degraded DNA [31]. The peaks at ca. 38 and 64 bp represent bioinformatic mapping artefacts.
In BWA the number of allowed mismatches when aligning each sequence to the reference genome is
defined by the sequence length, increasing from 2 to 3 allowed mismatches at 38 bp, and 4 allowed
mismatches at 64 bp. This relax in stringency is observed as more reads mapping. The peak observed at
81 bp represents the tail of the distribution piling up at the maximum sequencing length applied in this run.

3.3. Phylogeography

When the sequences were mapped against the coxI + cytb mitochondrial sequences from
Z. longissimus obtained from GenBank, HK2489 and ZMUC R8974 again displayed far more sequences
aligning than ZMUC R8975 (Table 2). With only very few sequences retained it was impossible to
generate a consensus sequence for ZMUC R8975 and was, therefore, excluded in downstream analyses.
For the two good samples we obtained approximately twice as many hits when mapping against
Z. longissimus mitochondrial genes compared to sequences of Z. lineatus (Table 2), confirming the
taxonomic identity of these two specimens. Moreover, we observed that both specimens had slightly
higher affinity (more hits) to the Eastern lineage within Z. longissimus than to the other three lineages
(Western, Greek, Asian) described previously [19].

Table 2. Genetic affinity by mapping.

Number of Reads Matching

Sample Eastern Western Greek Asian Z. lineatus

HK2489 467 463 460 453 169
ZMUC R8974 2225 2197 2131 2088 718
ZMUC R8975 4 4 4 4 3

Number of non-clonal sequences from each sample that could be mapped against the 1638 bp concatenated
sequence (cytb + coxI) from each of the four Z. longissimus clades and a closely-related outgroup species (Z. lineatus).
The two specimens with sufficient DNA preserved for analyses (HK2489 and ZMUC R8974) display the highest
number of matches when mapped against the Eastern clade sequence, indicative of their genetic affinity to this clade.

The merged bamfiles (duplicates removed) for HK2489 (467 reads) and ZMUC R8974 (2225 reads)
were imported and re-aligned in Geneious revealing coverage values of 58× (cytb) and 70X (coxI) for
ZMUC R8974, and 13× (cytB) and 15X (cox1) for HK2489. Following consensus calling and sequence
concatenation, a 1636 bp sequence was generated for ZMUC R8974 and a 1624 bp sequence for
HK2489, thus missing only very few sites compared to the 1638 bp concatenated sequences analysed
in Musilová et al. [19].

The network analysis securely placed the sequences of the two Danish individuals in the Eastern
lineage (Figure 3). The specimen HK2489 displayed the previously defined haplotype E1, whereas
ZMUC R8974 showed one unique mutation separating it from E1, and not previously observed in the
Z. longissimus gene pool (Figure 3). This nucleotide (position 1616 in the concatenated sequence) is a T
in ZMUC R8974 instead of the C observed in all previously published sequences. The position was
covered 12 times with unique non-clonal reads, all showing a T nucleotide, ruling out that this variant
call could be a result of deamination damage.
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E = Eastern, W = Western, G = Greek, A = Asian. The two Danish individuals are found in the Eastern
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derived from E1.

4. Discussion

4.1. DNA Preservation

By using a silica-in-solution DNA extraction method with a binding buffer optimized for
recovering very short molecules [20], we succeeded in obtaining and sequencing DNA from
two of the three 19th century specimens of Z. longissimus included in this study. Despite not
being a large systematic study, comparing different methods on many specimens, the results are
encouraging nonetheless and show that this aDNA extraction method is certainly applicable to old
ethanol-preserved specimens. More systematic studies are needed in order to test the performance in
comparison to other extraction methods that have worked on similar material (e.g., [32–34]). In terms of
utilizing different parts of a specimen, we observe that soft tissue, bone, and tooth samples all yielded
positive results for one of the snakes. To our knowledge this is the first study to report endogenous
DNA from snake teeth. There may be situations where one substrate is preferred over another and
now the molecular arguments are in place for targeting each of these substrates. The vertebra yielded
the best DNA library (highest efficiency) of the three substrates, but more tests are needed before
this can be confirmed as a general feature. In ZMUC R8975 both soft tissue and teeth failed to yield
DNA at levels that were feasible for further sequencing. Whichever factors that have affected DNA
preservation negatively in this specimen did not discriminate between the substrates.

The DNA in the snakes was highly degraded, showing short fragment lengths and C-T damage
fractions that are comparable to DNA from bones thousands of years old (e.g., [20]). This explains why
PCR-based experiments often fail on such material; the template molecules are too short to include
both primer binding regions and the target region between them. Although ethanol preservation has
ensured long-term morphological integrity of these snake specimens, the DNA molecules have clearly
been highly compromised. This is perhaps not surprising considering that many such specimens
are preserved in only 70% ethanol solution, likely causing DNA to degrade spontaneously in the
presence of 30% water [35]. Moreover, although these particular snakes were collected prior to the use
of formalin in preservation practices [36], formalin could very well have been added at a later stage,
perhaps explaining the high level of DNA degradation we observe [36].
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Nonetheless, the fact that we can successfully align > 4% of the reads to the genome of a
distantly-related snake species (T. sirtalis) is encouraging and highlights the genomic potential in
these samples. With a Z. longissimus reference genome available, our two historical specimens would
likely qualify for complete genome assembly and future studies will hopefully be able to take advantage
of the genome-wide shotgun data we have generated in this study.

4.2. Phylogeography

The primary objective of this investigation was to determine the genetic affinity of the extinct
Danish Z. longissimus population. Four major clades have been described within this species: two small
and basal clades near the Black Sea and in Greece, respectively, and two larger clades that expanded
northwards from their southwestern and southeastern refugia—likely in Southern France and the
Southern Balkans, respectively [19,37,38]. Our analyses clearly place the two Danish individuals in the
eastern clade, likely deriving from a Balkan refugium. The south of the Balkans served as a glacial
refugium for many reptiles (e.g., [39–43]) and our results suggest that it was an Z. longissimus expansion
from this refugium that reached as far north as Denmark during the mid-Holocene warming period.
This expansion mirrors the results from Musilová et al. [19] who demonstrated that the extant isolated
populations in Germany and Czech Republic also belong to this Eastern clade.

The question remains, however, whether these isolated extant and recently-extinct populations
are relicts of the wider mid-Holocene distribution demonstrated by fossils, or if they were introduced
at a later stage. Before fossil evidence was available, it was suggested that these isolated populations
could have been introduced, amongst others, by the ancient Romans, or later by Italian or French
noble families or Greek merchants [6,44,45]. While the presented data (here and elsewhere) cannot
exclude a later re-introduction based on individuals from the Eastern clade, they certainly exclude
an origin from the Western clade (Italy, France, etc.) or Greek clade, which would have been the null
hypothesis if they had been introduced by Romans or later merchants. Thus, our results suggest that
the now extinct Danish population from Southern Zealand was probably a true relict population from
the mid-Holocene warming period. In summary, this suggests that Z. longissimus occurred in Denmark
from at least 7500 BC up to the early 1900s, when the last observations were made.
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